PhD program Environmental and neuroendocrine control of pubertal initiation in Atlantic salmon

PhD student: Elia Ciani Main supervisor: Finn-Arne Weltzien Co-supervisors: Berta Levavi-Sivan, Romain Fontaine BASAM – Biokjemi og Fysiologi

My background

Biology

Limnology and Oceanography

University of Amsterdam

Master thesis in endocrinology

PhD – Puberty regulation in Salmo salar

Importance

- Ecological
- Economical

Puberty regulation Genetic Environment Puberty The period of becoming first capable of sexual reproduction Body size and composition Stress Social interactions **IMPRESS**

What controls puberty

Brain (Hypotalamus) - pituitary - gonad axes

Do fish need Lh for puberty, or can Fsh stand-in for it?

- Several evidences suggest a key role of Fsh in triggering puberty in fish.
 - In salmonids Fsh plasma levels are elevated at the beginning of and during the testis growth period while Lh is undetectable until approaching the spawning season (Gomez et al., 1999; Campbell et al., 2003)
 - In juvenile male sea bass treatment with recombinant Fsh elevated androgen plasma levels and stimulated spermatogenesis (Mazon et al., 2014)
- Information on the regulation of Fsh release is rather fragmentary

My task - Identify major regulators of Fsh secretion.

How to identify potential regulators?

Candidates

Some of the main hormones and neurotransmitters involved in the BPG axis

Fish collection

December 2015 Institute of marine research – Station of Matre. Norway.

IMPRESS

3 groups

Juveniles Females

Juvenile males

Mature males

Sampling

Anesthesia

Morphologic data

3 sets of samples

1) qPCR

2) Immuno/ In situ hybridization

3) Histology

Which receptors are expressed in the pituitary?

qPCR screening

	<u> </u>		Cerebellum		
	Telenceph	halon Hyp Pituitary	bothalamus	Medulla oblongat	٦
	Gene	Accession		Gene	Accession number
		number	Dopamine Receptors	d2	XM_14165852.1
Melatonin Receptors	melr 1a	XM_014212815.1		d2	XM_14243609.1
	melr 1al	XM_014213248.1		d3 (1)	XM_014159431.1
	melr 1aa	XM 014195255.1		d3 (2)	XM_014181529.1
	melr 1aal	XM_014208973.1		d4 (1)	XM_014124769.1
	molr 1bl	XM_01/163127.1		d4 (2)	XM_014127515.1
		XIVI_014103127.1		d4 (3)	XM_014127671.1
	melr 1bbl	XIVI_014215140.1		d4 (4)	XM_014152990.1
	melr 1cl	XM_014196791.1		d4 (5)	XM_014169905.1
				d4 (6)	XM_014176626.1
 GnRH 				d4 (7)	XM_014186702.1
• Kiss				d4 (8)	XM_014207615.1

Kiss ullet

Which receptors are expressed in Lh and Fsh cells?

Lh immunofluorescence Pituitary

Fsh immunofluorescence Pituitary

Fsh antibodies (Medaka) developed by Susann Burow in Levavi-Sivan laboratory

Future prospect

- Identify possible ٠ regulators of Fsh secretion
- Juveniles vs adults •

Deeper insight on the first stages of puberty

Test the effects of environmental factors hormones and brain neuropeptides on gonadotropes activity

Thank you for listening Thanks to my team

Kjetil Hodne, Eirill Ager-Wick, Romain Fontaine, Lotte Slenders, Guro Sandwik, Susann Burow, Kristine von Krogh, Finn-Arne Weltzien, Rasoul Nourizadeh-Lillabadi

Tusen takk Dankjewel Grazie mille Merci beaucoup

c